Time : 2 hours

TOPOLOGY III - MID-SEMESTRAL EXAM.

Answer all questions. You may use results proved in class after correctly quoting them. Any other claim must be accompanied by a proof.

(1) Let X be a space and let $S_*(X)$ denote its singular chain complex. For an abelian group G, define

$$h_n(X;G) = H_n(\operatorname{Hom}(G, S_*(X)))$$

where $\text{Hom}(G, S_*(X))$ denotes the chain complex whose *n*-th chain group is $\text{Hom}(G, S_n(X))$ with he obvious boundary map. Compute the groups $h_n(X; G)$ when $G = \mathbb{Z}, \mathbb{Z}_2, \mathbb{Q}$. [6]

(2) Suppose that the sequence

 $A \stackrel{f}{\longrightarrow} B \stackrel{g}{\longrightarrow} C \longrightarrow 0$

of abelian groups is exact. Show that the dual sequence

$$0 \longrightarrow \operatorname{Hom}(C,G) \xrightarrow{g} \operatorname{Hom}(B,G) \xrightarrow{J} \operatorname{Hom}(A,G)$$

is exact for every abelian group G. Further show that if f is injective and the first sequence splits then \tilde{f} is surjective and the second sequence splits. [10]

ĩ

- (3) Prove that there does not exist a manifold X such that S^4 is homeomorphic to $X \times S^2$. What is a more general statement that one can make? [6]
- (4) Let $X = \mathbb{R}P^2 \times S^3$. Compute the groups $H^i(X; G)$ for $G = \mathbb{Z}, \mathbb{Z}_2$. [10]
- (5) Define the notion of orientability of a manifold. Show that a connected orientable manifold has exactly two orientations. [2+6]